Å£¶Ùµü´ú·¨Êýѧ¹«Ê½
Å£¶Ùµü´ú·¨£¨Å£¶Ù-À·òÑ··¨£©Çó½â·½³Ì f(x) = 0 µÄ½üËƸù£¬ÆäÊýѧ¹«Ê½Îª£ºx(n+1) = x(n) – f(x(n)) / f'(x(n))¡£Ïêϸ°ì·¨°üÀ¨£ºÇó³öº¯Êý f(x) µÄµ¼Êý f'(x)¡£ÊäÈë³õʼÍƲâÖµ x_0¡£µü´úÅÌËã x(n)£¬Ö±ÖÁÊÕÁ²µ½ËùÐ辫¶È¡£
Å£¶Ùµü´ú·¨µÄÊýѧ¹«Ê½
Å£¶Ùµü´ú·¨£¬Ò²³ÆΪţ¶Ù-À·òÑ··¨£¬ÊÇÒ»ÖÖ¸ùµÄÊýÖµ½â·¨¡£ËüÓÃÓÚÇó½â·½³Ì f(x) = 0 ÖиùµÄ½üËÆÖµ¡£
ÆäÊýѧ¹«Ê½ÈçÏ£º
x(n+1) = x(n) – f(x(n)) / f'(x(n))
ÆäÖУº
- x(n) ÊÇµÚ n ´Îµü´úµÄ½üËÆÖµ¡£
- x(n+1) ÊÇµÚ n+1 ´Îµü´úµÄ½üËÆÖµ¡£
- f(x) ÊÇ´ýÇó¸ùµÄº¯Êý¡£
- f'(x) ÊÇ f(x) µÄµ¼Êý¡£
ÍƵ¼
Å£¶Ùµü´ú·¨µÄÍƵ¼´ÓÌ©ÀÕ¼¶ÊýÕö¿ª×îÏÈ£º
f(x_0 + h) = f(x_0) + hf'(x_0) + (h^2/2)f''(x_0) + ...
µÇ¼ºó¸´ÖÆ
ÆäÖÐ h ÊÇÒ»¸öÔöÁ¿¡£
ÈôÊÇÎÒÃÇÁî f(x_0 + h) = 0£¬Ôò»ñµÃ£º
f(x_0) + hf'(x_0) + (h^2/2)f''(x_0) + ... = 0
µÇ¼ºó¸´ÖÆ
ºöÂÔ¶þ½×¼°¸ü¸ß½×µÄµ¼Êý£¬ÎÒÃÇ»ñµÃ£º
f(x_0) + hf'(x_0) = 0
µÇ¼ºó¸´ÖÆ
Çó½â h£¬»ñµÃ£º
h = -f(x_0) / f'(x_0)
µÇ¼ºó¸´ÖÆ
Áî x_1 = x_0 + h£¬ÎÒÃÇ»ñµÃ£º
x_1 = x_0 - f(x_0) / f'(x_0)
µÇ¼ºó¸´ÖÆ
Õâ¾ÍÊÇÅ£¶Ùµü´ú·¨µÄ¹«Ê½¡£
ʹÓð취
- Çó³öf(x) µÄµ¼Êý f'(x)¡£
- ÊäÈëÒ»¸ö³õʼÍƲâÖµ x_0¡£
- ͨ¹ý¹«Ê½ x(n+1) = x(n) – f(x(n)) / f'(x(n))£¬µü´úÅÌËã x(n)¡£
- Öظ´°ì·¨ 3£¬Ö±µ½ x(n) ÊÕÁ²µ½ËùÐ辫¶È¡£
ÒÔÉϾÍÊÇÅ£¶Ùµü´ú·¨Êýѧ¹«Ê½µÄÏêϸÄÚÈÝ£¬¸ü¶àÇë¹Ø×¢±¾ÍøÄÚÆäËüÏà¹ØÎÄÕ£¡